Programs

3DMolMSHong Y., Li S., Welch C. J., Tichy S., Ye Y., Tang H., 3DMolMS: prediction of tandem mass spectra from 3D molecular conformations. Bioinformatics, 2023, 39, Article No btad354. Abstract
4-way Venn Diagram GeneratorAuthor: Chris Seidel
ACFISShi X.-X., Wang Z.-Z., Wang F., Hao G.-F., Yang G.-F., 2023, ACFIS 2.0: an improved web-server for fragment-based drug discovery via a dynamic screening strategy. Nucleic Acids Research, 2023, 51, W25–W32. Abstract
ACIDWang F., Wu F.-X., Li C.-Z., Jia C.-Y., Su S.-W., Hao G.-F., Yang G.-F., ACID: a free tool for drug repurposing using consensus inverse docking strategy. Journal of Cheminformatics, 2019, 11, Article No 73. Abstract
ACPYPEKagami L., Wilter A., Diaz A., Vranken V., The ACPYPE web server for small-molecule MD topology generation. Bioinformatics, 2023, 39, Article No btad350. Abstract
Activity Landscape PlotterGonzález-Medina M., Méndez-Lucio O., Medina-Franco J. L., Activity Landscape Plotter: a web-based application for the analysis of structure–activity relationships. Journal of Chemical Information and Modeling, 2017, 57, 397–402. Abstract
ADME SARfariDavies M., Dedman N, Hersey A., Papadatos G., Hall M. D., Cucurull-Sanchez L., Jeffrey P., Hasan S., Eddershaw P. J., Overington J. P., ADME SARfari: comparative genomics of drug metabolizing systems. Bioinformatics, 2015, 31, 1695–1697. Abstract
ADMETlabDong J., Wang N.-N., Yao Z-J., Zhang L., Cheng Y., Ouyang D., Lu A.-P., Cao D.-S., ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 2018, 10, Article No 29. Abstract
ADMETlab 2.0Xiong G., Wu Z., Yi J., Fu L., Yang Z., Hsieh C., Yin M., Zeng X., Wu C., Lu A., Chen X., Hou T., Cao D., ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 2021, 49, W5–W14. Abstract
ADMEToptYang H., Sun L., Wang Z., Li W., Liu G., Tang Y., ADMETopt: a web server for ADMET optimization in drug design via scaffold hopping. Journal of Chemical Information and Modeling, 2018, 58, 2051–2056. Abstract
AdmetSARYang H., Lou C., Sun L., Li J., Cai Y., Wang Z., Li W., Liu G., Tang Y., admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35, 1067–1069. Abstract
ADVERPredIvanov S. M., Lagunin A. A., Rudik A. V., Filimonov D. A., Poroikov V. V., ADVERPred–web service for prediction of adverse effects of drugs. Journal of Chemical Information and Modeling, 2018, 58, 8–11. Abstract
Aggregator AdvisorIrwin J. J., Duan D., Torosyan H., Doak A. K., Ziebart K. T., Sterling T., Tumanian G., Shoichet B. K., An Aggregation Advisor for ligand discovery. Journal of Medicinal Chemistry, 2015, 58, 7076–7087. Abstract
AlkemioGijón-Correas J. A., Andrade-Navarro M. A., Fontaine J. F., Alkemio: association of chemicals with biomedical topics by text and data mining. Nucleic Acids Research, 2014, 42, W422–W429. Abstract
AlloFinderHuang M., Song K., Liu X., Lu S., Shen Q., Wang R., Gao J., Hong Y., Li Q., Ni D., Xu J., Chen G., Zhang J., AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Research, 2018, 46, W451–W458. Abstract
ALOGPSTetko I. V., Bruneau P., Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J. Pharm. Sci., 2004, 93, 3103-3110. Abstract
AMMOS2Labbé C., Pencheva T., Jereva D., Desvillechabrol D., Becot J., Villoutreix B. O., Pajeva I., Miteva M. A., AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics. Nucleic Acids Research, 2017, 45, W350–W355. Abstract
AnchorQueryKoes D. R., Dömling A., Camacho C. J., AnchorQuery: Rapid online virtual screening for small-molecule protein–protein interaction inhibitors. Protein Science, 2018, 27, 229-232. Abstract
antiSMASHBlin K., Shaw S., Augustijn H. E., Reitz Z. L., Biermann F., Alanjary M., Fetter A., Terlouw B. R., Metcalf W. W., Helfrich E. J. N., van Wezel G. P., Medema M. H., Weber T., antiSMASH 7.0: new and impr o ved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 2023, 51, W46–W50. Abstract
ASFPZhang X., Shen C., Guo X., Wang Z., Weng G., Ye Q., Wang G., He Q., Yang B., Cao D., Hou T., ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions. Journal of Cheminformatics, 2021, 13, Article No 6. Abstract
Atomic Charge CalculatorIonescu C.-M., Sehnal D., Falginella F. L., Pant P., Pravda L., Bouchal T., Svobodová Vařeková R., Geidl S., Koča J., Atomic charge calculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. Journal of Cheminformatics, 2015, 7, Article No 50. Abstract
Atomic Charge Calculator IISchindler O., Raček T., Maršavelski A., Koča J., Berka K., Svobodová R., Optimized SQE atomic charges for peptides accessible via a web application. Journal of Cheminformatics, 13, Article No 45. Abstract
BATMAN-TCMKong X., Liu C., Zhang Z., Cheng M., Mei Z., Li X., Liu P., Diao L., Ma Y., Jiang P., Kong X., Nie S., Guo Y., Wang Z., Zhang X., Wang Y., Tang L., Guo S., Liu Z., Li D., BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Research, 2024, 52, D1110–D1120. Abstract
BayesilRavanbakhsh S., Liu P., Bjordahl T. C., Mandal R., Grant J. R., Wilson M., Eisner R., Sinelnikov I., Hu X., Luchinat C., Greiner R., Wishart D. S., Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 2015, 10, Article No e0124219. Abstract
BDPServerProvider: Centro Nacional de Biotecnologia, CSIC
BEEREYue Z., Willey C. D., Hjelmeland A. B., Chen J. Y., BEERE: a web server for biomedical entity expansion, ranking and explorations. Nucleic Acids Research, 2019, 47, W578–W586. Abstract
BiasNetSanchez J. E., KC G. B., Franco J., Allen W. J., Garcia J. D., Sirimulla S., BiasNet: a model to predict ligand bias toward GPCR signaling. J. Chem. Inf. Model., 2021, 61, 4190–4199. Abstract
BINANAYoung J., Garikipati N., Durrant J. D., BINANA 2: Characterizing receptor/ligand interactions in Python and JavaScript. Journal of Chemical Information and Modeling, 2022, 62, 753–760. Abstract
BiNChEMoreno P., Beisken S., Harsha B., Muthukrishnan V., Tudose I., Dekker A., Dornfeldt S., Taruttis F., Grosse I., Hastings J., Neumann S., Steinbeck C., BiNChE: A web tool and library for chemical enrichment analysis based on the ChEBI ontology. BMC Bioinformatics, 2015, 16, Article No 56. Abstract
Bioactivity-explorerLiang L., Ma C., Du T., Zhao Y., Zhao X., Liu M., Wang Z., Lin J., Bioactivity-explorer: a web application for interactive visualization and exploration of bioactivity data. Journal of Cheminformatics, 2019, 11, Article No 47. Abstract
BioMet ToolboxGarcia-Albornoz M., Thankaswamy-Kosalai S., Nilsson A., Väremo L., Nookaew I., Nielsen J., BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Research, 2014,42, W175–W181. Abstract
BioSilicoHou B. K., Kim J. S., Jun J. H., Lee D.-Y., Kim Y. W., Chae S., Roh M., In Y.-H., Lee S. Y., BioSilico: an integrated metabolic database system. Bioinformatics, 2004, 20, 3270-3272. Abstract
BioStatFlowProvider: INRA
Bio-TDSGnimpieba E. Z., VanDiermen M. S., Gustafson S. M., Conn B., Lushbough C. M., Bio-TDS: bioscience query tool discovery system. Nucleic Acids Research, 2017, 45, D1117–D1122. Abstract
BioTransformerWishart D. S., Tian S., Allen D., Oler E., Peters H., Lui V. W., Gautam V., Djoumbou-Feunang Y., Greiner R., Metz T. O., BioTransformer 3.0–a web server for accurately predicting metabolic transformation products. Nucleic Acids Research, 2022, 50, W115–W123. Abstract
BioTriangleDong J., Yao Z.-J., Wen M., Zhu M.-F., Wang N.-N., Miao H.-Y., Lu A.-P., Zeng W.-B., Cao D.-S., BioTriangle: a web‑accessible platform for generating various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions. Journal of Cheminformatics, 2016, 8, Article No 34. Abstract
BitterPredictDagan-Wiener A., Nissim I., Ben Abu N., Borgonovo G., Bassoli A., Niv M. Y., Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Scientific Reports, 2017, 7, Article No 12074. Abstract
BitterSweet PredictTuwani R., Wadhwa S., Bagler G., BitterSweet: building machine learning models for predicting the bitter and sweet taste of small molecules. Scientific Reports, 2019, 9, Article No 7155. Abstract
BitterXHuang W., Shen Q., Su X., Ji M., Liu X., Chen Y., Lu S., Zhuang H., Zhang J., BitterX: a tool for understanding bitter taste in humans. Scientific Reports, 2016, 6, Article No 23450. Abstract
BMapsBryan D. R., Kulp J. L. Jr., Mahapatra M. K., Bryan R. L., Viswanathan U., Carlisle M. N., Kim S., Schutte W. D., Clarke K. V., Doan T. T., Kulp J. L. III, BMaps: A web application for fragment-based drug design and compound binding evaluation. Journal of Chemical Information and Modeling, 2023, 63, 4229–4236. Abstract
BoBERLešnik S., Škrlj B., Eržen N., Bren U., Gobec S., Konc J., Janežič D., BoBER: web interface to the base of bioisosterically exchangeable replacements. Journal of Cheminformatics, 2017, 9, Article No 62. Abstract
BreezePotdar S., Ianevski F., Ianevski A.,Tanoli Z., Wennerberg W., Seashore-Ludlow B., Kallioniemi O., Östling P., Aittokallio T., Saarela J., Breeze 2.0: an interactive web-tool for visual analysis and comparison of drug response data. Nucleic Acids Research, 2023, 51, W57–W61. Abstract
CACTUS websiteSitzmann M., Filippov I.V., Nicklaus M.C., Internet resources integrating many small molecular databases. SAR QSAR in Environmental Research, 2008, 19, 1-9. Abstract
CADDIEHartung M., Anastasi E., Mamdouh Z. M., Nogales C., Schmidt H. H. H. W., Baumbach J., Zolotareva O., List M., Cancer driver drug interaction explorer. Nucleic Acids Research, 2022, 50, W138–W144. Abstract
CarcinoPred-ELZhang L., Ai H., Chen W., Yin Z., Hu H., Zhu J., Zhao J., Zhao Q., Liu H., CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Scientific Reports, 2017, 7, Article No 2118. Abstract
cardioToxCSMIftkhar S., de Sá A. G. C., Velloso J. P. L., Aljarf R., Pires D. E. V., Ascher D. B., cardioToxCSM: A web server for predicting cardiotoxicity of small molecules. Journal of Chemical Information and Modeling, 2022, 62, 4827-4836. Abstract
CAVEMao Z., Yuan Q., Li H., Zhang Y., Huang Y., Yang C., Wang R., Yang Y., Wu Y., Yang S., Liao X., Ma H., CAVE: a cloud-based platform for analysis and visualization of metabolic pathways. Nucleic Acids Research, 2023, 51, W70–W77. Abstract
CB-DockLiu Y., Grimm M., Dai W., Hou M., Xiao Z.-X., Cao Y., CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 2020, 41, 138–144. Abstract
CB-Dock2Liu Y., Yang X., Gan J., Chen S., Xiao Z.-X., Cao Y., CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 2022, 50, W159–W164. Abstract
CDPsGonzález-Medina M., Prieto-Martínez F. D., Owen J. R., Medina-Franco J. L., 2016, Consensus Diversity Plots: a global diversity analysis of chemical libraries. Journal of Cheminformatics, 2016, 8, Article No 63. Abstract
CDRUGLi G.-H., Huang J.-F., CDRUG: a web server for predicting anticancer activity of chemical compounds.  Bioinformatics, 2012, 28, 3334-3335. Abstract
CFM-IDWang F., Allen D., Tian S., Oler E., Gautam V., Greiner R., Metz T. O., Wishart D. S., CFM-ID 4.0 – a web server for accurate MS-based metabolite identification. Nucleic Acids Research, 2022, 50, W165–W174. Abstract
ChAIPredSharma N., Patiyal S., Dhall A., Devi N. L., Raghava G. P. S., ChAlPred: A web server for prediction of allergenicity of chemical compounds. Computers in Biology and Medicine, 2021, 136, Article No 104746. Abstract
CheckMyBlobBrzezinski D., Porebski P. J., Kowiel M., Macnar J. M., Minor W., Recognizing and validating ligands with CheckMyBlob. Nucleic Acids Research, 2021, 49, W86–W92. Abstract
ChemBCPPDong J., Wang N.-N., Liu K.-Y., Zhu M.-F., Yun Y.-H., Zeng W.-B., Chen A. F., Cao D.-S., ChemBCPP: A freely available web server for calculating commonly used physicochemical properties. Chemometrics and Intelligent Laboratory Systems, 2017, 171, 65–73. Abstract
ChemBioNavigatorStierand K., Harder T., Marek T., Hilbig M., Lemmen C., Rarey M., The internet as scientific knowledge base: Navigating the chem-bio space. Molecular Informatics, 2012, 31, 543-546. Abstract
ChemBioServerAthanasiadis E., Cournia Z., Spyrou G., ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics, 2012, 28, 3002-3003. Abstract
ChEMBL BrowserReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
ChemCalcPatiny L., Borel A., ChemCalc: A building block for tomorrow’s chemical infrastructure. Journal of Chemical Information and Modeling, 2013, 53, 1223–1228. Abstract
ChemComputeProvider: Sonoma State University
ChemDesDong J., Cao D.-S., Miao H.-Y., Liu S., Deng B.-C., Yun Y.-H., Wang N.-N., Lu A.-P., Zeng W.-B., Chen A. F., ChemDes: an integrated web‑based platform for molecular descriptor and fingerprint computation. Journal of Cheminformatics, 2015, 7, 60. Abstract
ChemFluoYang Z.-Y., Dong J., Yang Z.-J., Yin M., Jiang H.-L., Lu A.-P., Chen X., Hou T.-J., Cao D.-S., ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds. Briefings in Bioinformatics, 2021, 22, Article No bbaa282. Abstract
ChemGeneratorYang J., Hou L., Liu K.-M., He W.-B, Cai Y., Yang F.-Q., Hu Y.-J., ChemGenerator: a web server for generating potential ligands for specific targets. Briefings in Bioinformatics, 2021, 22, Article No bbaa407. Abstract
Chemical Activity PredictorProvider: National Institutes of Health
Chemical Identifier ResolverMuresan S., Sitzmann M., Southan C., Mapping between databases of compounds and protein targets. Methods in Molecular Biology, 2012, 910, 145-164. Abstract
Chemical Structure LookupSitzmann M., Filippov I.V., Nicklaus M.C., Internet resources integrating many small molecular databases. SAR QSAR in Environmental Research, 2008, 19, 1-9. Abstract
Chemicalize.orgSouthan C., Stracz A., Extracting and connecting chemical structures from text sources using chemicalize.org. Journal of Cheminformatics, 2013, 5, Article No 20. Abstract
ChemicalToolboxBray S. A., Lucas X., Kumar A., Grüning B. A., The ChemicalToolbox: reproducible, user-friendly cheminformatics analysis on the Galaxy platform. Journal of Cheminformatics, 2020, 12, Article No 40. Abstract
Chemical Translation ServiceWohlgemuth G., Haldiya P. K., Willighagen E., Kind T., Fiehn O., The Chemical Translation Service – a web-based tool to improve standardization of metabolomic reports. Bioinformatics, 2010, 26, 2647–2648. Abstract
ChemMapperGong J., Cai C., Liu X., Ku X., Jiang H., Gao D., Li H., ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics, 2013, 29, 1827-1829. Abstract
ChemMapsBorrel A., Conway M., Nolte S. Z., Unnikrishnan A., Schmitt C. P., Kleinstreuer N. C., ChemMaps.com v2.0: exploring the environmental chemical universe. Nucleic Acids Research, 2023, 51, W78–W82. Abstract
ChemMineBackman T. W. H., Cao Y., Girke T., ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Research, 2011, 39, W486–W491. Abstract
ChemMORTYi J.-C., Yang Z.-Y., Zhao W.-T., Yang Z.-J., Zhang X.-C., Wu C.-K., Lu A.-P., Cao D.-S., ChemMORT: an automatic ADMET optimization platform using deep learning and multi-objective particle swarm optimization. Briefings in Bioinformatics, 2024, 25, Article No bbae008. Abstract
ChemotextCapuzzi S. J., Thornton T. E., Liu K., Baker N., Lam W. I., O’Banion C. P., Muratov E. N., Pozefsky D., Tropsha A., Chemotext: a publicly available web server for mining drug–target–disease relationships in PubMed. Journal of Chemical Information and Modeling, 2018, 58, 212–218. Abstract
ChemSARDong J., Yao Z.-J., Zhu M.-F., Wang N.-N., Lu B., Chen A. F., Lu A.-P., Miao H., Zeng W.-B., Cao D.-S., ChemSAR: an online pipelining platform for molecular SAR modeling. Journal of Cheminformatics, 2017, 9, Article No 27. Abstract
CILGrüning B. A., Senger C., Erxleben A., Flemming S., Günther S., Compounds In Literature (CIL): screening for compounds and relatives in PubMed. Bioinformatics, 2011, 27, 1341–1342. Abstract
Click2DrugProvider: Swiss Institute of Bioinformatics
ClusProPorter K. A., Xia B., Beglov D., Bohnuud T., Alam N., Schueler-Furman O., Kozakov D., ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics, 2017, 33, 3299–3301. Abstract
ClustVisMetsalu T., Vilo J., ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 2015, 43, W566–W570. Abstract
CMCLiu L., Tsompana M., Wang Y., Wu D., Zhu L., Zhu R., Connection Map for Compounds (CMC): a server for combinatorial drug toxicity and efficacy analysis. Journal of Chemical Information and Modeling, 2016, 56, 1615–1621. Abstract
COACHYang J., Roy A., Zhang Y., Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 2013, 29, 2588-2595. Abstract
COACH-DWu Q., Peng Z., Zhang Y., Yang J., COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Research, 2018, 46, W438–W442. Abstract
CODD-PredYin X., Wang X., Li Y., Wang J., Wang Y., Deng Y., Hou T., Liu H., Luo P., Yao X., CODD-Pred: A web server for efficient target identification and bioactivity prediction of small molecules. Journal of Chemical Information and Modeling, 2023, 63, 6169–6176. Abstract
CollectorLópez-Massaguer O., Sanz F., Pastor M., An automated tool for obtaining QSAR-ready series of compounds using semantic web technologies. Bioinformatics, 2018, 34, 131–133. Abstract
ConvertProvider: University of New Mexico
COPICATSakakibara Y., Hachiya T., Uchida M., Nagamine N., Sugawara Y., Yokota M., Nakamura M., Popendorf K., Komori T., Sato K., COPICAT: a software system for predicting interactions between proteins and chemical compounds. Bioinformatics, 2012, 28, 745-746. Abstract
COSMOSSadowski P., Baldi P., Small-molecule 3D structure prediction using open crystallography data. Journal of Chemical Information and Modeling, 2013, 53, 3127–3130. Abstract
CovalentDock CloudOuyang X. Zhou S., Ge Z., Li R., Kwoh C. K., CovalentDock Cloud: a web server for automated covalent docking. Nucleic Acids Research, 2013, 41, W329-W332. Abstract
CPRiLQaseem A., Günther S., CPRiL: compound–protein relationships in literature. Bioinformatics, 2022, 38, 4452–4453. Abstract
CRDD websiteProvider: IMTECH/CSIR
CRDSLee A., Kim D., CRDS: consensus reverse docking system for target fishing. Bioinformatics, 2020, 36, 959–960. Abstract
CSI:FingerIDDührkop K., Shen H., Meusel M., Rousu J., Böcker S., Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12580–12585. Abstract
CSM-ligPires D. E. V., Ascher D. B., CSM-lig: a web server for assessing and comparing protein–small molecule affinities. Nucleic Acids Research, 2016, 44, W557–W561. Abstract
CSNAPLo Y.-C., Senese S., Li C.-M., Hu Q., Huang Y., Damoiseaux R., Torres J. Z., Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens. PLoS Computational Biology, 2015, 11, Article No e1004153. Abstract
C-SPADERavikumar B., Alam Z., Peddinti G., Aittokallio T., C-SPADE: a web-tool for interactive analysis and visualization of drug screening experiments through compound-specific bioactivity dendrograms. Nucleic Acids Research, 2017, 45, W495–W500. Abstract
CycloPsDuffy F. J., Verniere M., Devocelle M., Bernard E., Shields D. C., Chubb A. J., CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. Journal of Chemical Information and Modeling, 2011, 51, 829-836. Abstract
DASPfindBa‑alawi W., Soufan O., Essack M., Kalnis P., Bajic V. B., DASPfind: new efficient method to predict drug–target interactions. Journal of Cheminformatics, 2016, 8, Article No 15. Abstract
dbCAN3Zheng J., Ge Q., Yan Y., Zhang X., Huang L., Yin Y., dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Research, 2023, 51, W115–W121. Abstract
DECIMERRajan K., Brinkhaus H. O., Sorokina M., Zielesny A., Steinbeck C., DECIMER‑Segmentation: Automated extraction of chemical structure depictions from scientific literature. Journal of Cheminformatics, 2021, 13, Article No 20. Abstract
DeepARSchaduangrat N., Anuwongcharoen N., Charoenkwan P., Shoombuatong W., DeepAR: a novel deep learning‑based hybrid framework for the interpretable prediction of androgen receptor antagonists. Journal of Cheminformatics, 2023, 15, Article No 50. Abstract
DeepFragGreen H., Durrant J. D., DeepFrag: an open-source browser app for deep-learning lead optimization. Journal of Chemical Information and Modeling, 2021, 61, 2523-2529. Abstract
DeepScreeningLiu Z., Du J., Fang J., Yin Y., Xu G., Xie L., 2019, DeepScreening: a deep learning-based screening web server for accelerating drug discovery. Database, Article No baz104. Abstract
DeepSynergyPreuer K., Lewis R. P. I., Hochreiter S., Bender A., Bulusu K. C., Klambauer G., DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 2018, 34, 1538–1546. Abstract
Dendrimer BuilderProvider: University of Bern
DIGREMZhang M., Lee S., Yao B., Xiao G., Xu L., Xie Y., DIGREM: an integrated web-based platform for detecting effective multi-drug combinations. Bioinformatics, 2019, 35, 1792–1794. Abstract
DINIESYamanishi Y., Kotera M., Moriya Y., Sawada R., Kanehisa M., Goto S., DINIES: drug–target interaction network inference engine based on supervised analysis. Nucleic Acids Research, 2014, 42, W39–W45. Abstract
DockThorSantos K. B., Guedes I. A., Karl A. L. M., Dardenne L. E., Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. Journal of Chemical Information and Modeling, 2020, 60, 667-683. Abstract
D-Peptide BuilderDíaz-Eufracio B. I., Palomino-Hernández O., Arredondo-Sánchez A., Medina-Franco J. L., D-Peptide Builder: a web service to enumerate, analyze, and visualize the chemical space of combinatorial peptide libraries. Molecular Informatics, 2020, 39, Article No 2000035. Abstract
DPubChemSoufan O., Ba-alawi W., Magana-Mora A., Essack M., Bajic V. B., DPubChem: a web tool for QSAR modeling and high-throughput virtual screening. Scientific Reports, 2018, 8, Article No 9110. Abstract
DrawGlycan-SFNGCheng K., Zhou Y., Neelamegham S., DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology, 2017, 27, 200–205. Abstract
DrugBank MQN BrowserReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
DrugBank SMIfp BrowserReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
DrugCombZheng S., Aldahdooh J., Shadbahr T., Wang Y., Aldahdooh D., Bao J., Wang W., Tang J., DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal. Nucleic Acids Research, 2021, 49, W174–W184. Abstract
DrugE-RankYuan Q., Gao J., Wu D., Zhang S., Mamitsuka H., Zhu S., DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics, 2016, 32, i18–i27. Abstract
DrugMintDhanda S. K., Singla D., Mondal A. K., Raghava G. P. S., DrugMint: a webserver for predicting and designing of drug-like molecules. Biology Direct, 2013, 8, Article No 28. Abstract
DrugmonizomeKropiwnicki E., Evangelista J. E., Stein D. J., Clarke D. J. B., Lachmann A., Kuleshov M. V., Jeon M., Jagodnik K. M., Ma’ayan A., Drugmonizome and Drugmonizome-ML: integration and abstraction of small molecule attributes for drug enrichment analysis and machine learning. Database, 2021, Article No baab017. Abstract
DrugQuestPapanikolaou N., Pavlopoulos G. A., Theodosiou T., Vizirianakis I. S., Iliopoulos I., DrugQuest – a text mining workflow for drug association discovery. BMC Bioinformatics, 2016, 17 (Suppl 5), Article No 182. Abstract
DrugRepGan J., Liu J., Liu Y., Chen S., Dai W., Xiao Z.-X., Cao Y., DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacologica Sinica, 2022, doi: 10.1038/s41401-022-00996-2. Abstract
Drug ReposER
Ab Ghani N. S., Ramlan E. I., Firdaus-Raih M., Drug ReposER: a web server for predicting similar amino acid arrangements to known drug binding interfaces for potential drug repositioning. Nucleic Acids Research, 2019, 47, W350–W356. Abstract
Drug Target ProfilerTanoli Z., Alam Z., Ianevski A., Wennerberg K., Vähä-Koskela M., Aittokallio T., Interactive visual analysis of drug–target interaction networks using Drug Target Profiler, with applications to precision medicine and drug repurposing. Briefings in Bioinformatics, 2020, 21, 211–220. Abstract
EBI Search EnginePark Y. M., Squizzato S., Buso N., Gur T., Lopez R., The EBI search engine: EBI search as a service-making biological data accessible for all. Nucleic Acids Research, 2017, 45, W545–W549. Abstract
EDockZhang W., E. W., Yin M., Zhang Y., EDock: blind protein–ligand docking by replica‑exchange Monte Carlo simulation. Journal of Cheminformatics, 2020, 12, Article No 37. Abstract
embryoToxAljarf R., Tang S., Pires D. E. V., Ascher D. B., embryoTox: Using graph-based signatures to predict the teratogenicity of small molecules. Journal of Chemical Information and Modeling, 2023, 63, 432–441. Abstract
eMolToxJi C., Svensson F., Zoufir A., Bender A., eMolTox: prediction of molecular toxicity with confidence. Bioinformatics, 2018, 34, 2508–2509. Abstract
Epigenetic Target ProfilerSánchez-Cruz N., Medina-Franco J. L., Epigenetic Target Profiler: a web server to predict epigenetic targets of small molecules. Journal of Chemical Information and Modeling, 2021, 61, 1550–1554. Abstract
ePlattonDu Y., Shi T., Ligand cluster-based protein network and ePlatton, a multi-target ligand finder. Journal of Cheminformatics, 2016, 8, Article No 23. Abstract
ESPKroll A., Ranjan S., Engqvist M. K. M., Lercher M. J., A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nature Communications, 2023, 14, Article No 2787. Abstract
EVennChen T., Zhang H., Liu Y., Liu Y.-X., Huang L., EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online. Journal of Genetics and Genomics, 2021, 48, 863-866. Abstract
E-zymeYamanishi Y., Hattori M., Kotera M., Goto S., Kanehisa M., E-zyme: Predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics, 2009, 25, i179-i186. Abstract
FAERUNProbst D., Reymond J.-L., FUn: A framework for interactive visualizations of large, high-dimensional datasets on the web. Bioinformatics, 2018, 34, 1433-1435. Abstract
FAF-Drugs4Lagorce D., Bouslama L., Becot J., Miteva M. A., Villoutreix B. O., FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 2017, 22, 3658–3660. Abstract
FAME 3Šícho M., Stork C., Mazzolari A., de Bruyn Kops C., Pedretti A., Testa B., Vistoli G., Svozil D., Kirchmair J., FAME 3: Predicting the sites of metabolism in synthetic compounds and natural products for phase 1 and phase 2 metabolic enzymes. Journal of Chemical Information and Modeling, 2019, 59, 3400-3412. Abstract
FEPrepareZavitsanou S., Tsengenes A., Papadourakis M., Amendola G., Chatzigoulas A., Dellis D., Cosconati S., Cournia Z., FEPrepare: a web-based tool for automating the setup of relative binding free energy calculations. Journal of Chemical Information and Modeling, 2021, 61, 4131-4138. Abstract
FINDSITEcomb2.0Zhou H., Cao H., Skolnick J., FINDSITEcomb2.0: A new approach for virtual ligand screening of proteins and virtual target screening of biomolecules. Journal of Chemical Information and Modeling, 2018, 58, 2343–2354. Abstract
FingerIDDührkop K., Shen H., Meusel M., Rousu J., Böcker S., Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12580–12585. Abstract
FishBAITProvider: Indian Institute of Technology Delhi
FitDockYang X., Liu Y., Gan J., Xiao Z.-X., Cao Y., FitDock: protein–ligand docking by template fitting. Briefings in Bioinformatics, 2022, 23, Article No bbac087. Abstract
FMMChou C. H., Chang W. C., Chiu C. M., Huang C. C., Huang H. D., FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Research, 2009, 37, W129-W134. Abstract
foodMASSTWest K. A., Schmid R., Gauglitz J. M., Wang M., Dorrestein P. C., foodMASST a mass spectrometry search tool for foods and beverages. Science of Food, 2022, 6, Article No 22. Abstract
FormulationAIDong J., Wu Z., Xu H., Ouyang D., FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence. Briefings in Bioinformatics, 24, 25, Article No bbad419. Abstract
Fragrance BrowserRuddigkeit L., Awale M., Reymond J.-L., Expanding the fragrance chemical space for virtual screening. Journal of Cheminformatics, 2014, 6, Article No 27. Abstract
FragRepShan J., Pan X., Wang X., Xiao X., Ji C., FragRep: a web server for structure-based drug design by fragment replacement. Journal of Chemical Information and Modeling, 2020, 60, 5900-5906. Abstract
GalahadLaenen G., Ardeshirdavani A., Moreau Y., Thorrez L., Galahad: a web server for drug effect analysis from gene expression. Nucleic Acids Research, 2015, 43, W208-W212. Abstract
Galaxy7TMLee G. R., Seok C., Galaxy7TM: flexible GPCR–ligand docking by structure refinement. Nucleic Acids Research, 2016, 44, W502–W506. Abstract
GalaxySagittariusYang J., Kwon S., Bae S.-H., Park K. M., Yoon C., Lee J.-H., Seok C., GalaxySagittarius: structure- and similarity-based prediction of protein targets for druglike compounds. Journal of Chemical Information and Modeling, 2020, 60, 3246–3254. Abstract
GDACaroli J., Sorrentino G., Forcato M., Del Sal G., Bicciato S., GDA, a web-based tool for Genomics and Drugs integrated analysis. Nucleic Acids Research, 2018, 46, W148–W156. Abstract
GIANTKasahara K., Kinoshita K., GIANT: pattern analysis of molecular interactions in 3D structures of protein–small ligand complexes. BMC Bioinformatics, 15, Article No 12. Abstract
Glycam WebProvider: University of Georgia
GlycanBuilderDamerell D., Ceroni A., Maass K., Ranzinger R., Dell A., Haslam S. M., 2012, The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biological Chemistry, 2012, 393, 1357-1362. Abstract Tsuchiya S., Aoki N. P., Shinmachi D., Matsubara M., Yamada I., Aoki-Kinoshita K. F., Narimatsu H., Implementation of GlycanBuilder to draw a wide variety of ambiguous glycans. Carbohydrate Research, 2017, 445, 104-116. Abstract
GlycoDigestGotz L., Abrahams J. L., Mariethoz J., Rudd P. M., Karlsson N. G., Packer N. H., Campbell M. P., Lisacek F., GlycoDigest: a tool for the targeted use of exoglycosidase digestions in glycan structure determination. Bioinformatics, 2014, 30, 3131-3133. Abstract
GlycoFragmentsLohmann K.K., von der Lieth C.-W., GlycoFragment and GlycoSearchMS: web tools to support the interpretation of mass spectra of complex carbohydrates. Nucleic Acids Research, 2004, W261–W266. Abstract
GlycoQLHayes C., Daponte V., Mariethoz J., Lisacek F., This is GlycoQL. Bioinformatics, 2022, 38, Supplement 2, ii162–ii167. Abstract
GRASSKapaev R. R., Toukach P. V., GRASS: semi-automated NMR-based structure elucidation of saccharides. Bioinformatics, 2018, 34, 957–963. Abstract
HeatmapperBabicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A., Wishart D. S., Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research, 2016, 44, W147–W153. Abstract
HemINing W., Wei Y., Gao L., Han C., Gou Y., Fu S., Liu D., Zhang C., Huang X., Wu S., Peng D., Wang C., Xue Y., HemI 2.0: an online service for heatmap illustration. Nucleic Acids Research, 2022, 50, W405–W411. Abstract
HExpoChemTaboureau O., Jacobsen U. P., Kalhauge C., Edsgärd D., Rigina O., Gupta R., Audouze K., HExpoChem: a systems biology resource to explore human exposure to chemicals. Bioinformatics, 2013, 29, 1231-1232. Abstract
Hit Dexter 2.0Stork C., Chen Y., Šícho M., Kirchmair J., Hit Dexter 2.0: machine-learning models for the prediction of frequent hitters. Journal of Chemical Information and Modeling, 2019, 59, 1030–1043. Abstract
HitPickHamad S., Adornetto G., Naveja J. J., Ravindranath A. C., Raffler J., Campillos M., HitPickV2: a web server to predict targets of chemical compounds. Bioinformatics, 2019, 35, 1239–1240. Abstract
HPLC Method Transfer CalculatorProvider: Sigma-Aldrich
IC50 ConverterProvider: Soongsil University
ICDrugWei M., Zhang X., Pan X., Wang B., Ji C., Qi Y., Zhang J. Z. H., HobPre: accurate prediction of human oral bioavailability for small molecules. Journal of Cheminformatics, 2022, 14, 1. Abstract

Zhang X., Mao J., Wei M., Qi Y., Zhang J. Z. H., HergSPred: accurate classification of hERG blockers/nonblockers with machine-learning models. Journal of Chemical Information and Modeling, 2022, 62, 1830–1839. Abstract
iFITPetrič B., Goličnik M., Bavec A., iFIT: An automated web tool for determining enzyme-kinetic parameters based on the high-curvature region of progress curves. Acta Chimica Slovenica, 2022, 69, 478-482. Abstract
iMetAguilar-Mogas A., Sales-Pardo M., Navarro M., Guimerà R., Yanes O., iMet: a network-based computational tool to assist in the annotation of metabolites from tandem mass spectra. Analytical Chemistry, 2017, 89, 3474–3482. Abstract
InChIChemspider website
IntelliPatentWang P.-H., Tseng Y. J., IntelliPatent: a web‑based intelligent system for fast chemical patent claim drafting. Journal of Cheminformatics, 2019, 11, Article No 78. Abstract
InteractiVennHeberle H., Vaz Meirelles G., da Silva F. R., Telles G. P., Minghim R., InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 2015, 16, Article No 169. Abstract
IntercalateSoni A., Khurana P., Singh T., Jayaram B., A DNA intercalation methodology for an efficient prediction of ligand binding pose and energetics. Bioinformatics, 2017, 33, 1488-1496. Abstract
IOCB RDF PlatformGalgonek J., Hurt T., Michlíková V., Onderka P., Schwarz J., Vondrášek J., Advanced SPARQL querying in small molecule databases. Journal of Cheminformatics, 2016, 8, Article No 31. Abstract
iPathDarzi Y., Letunic I., Bork P., Yamada T., iPath3.0: interactive pathways explorer v3. Nucleic Acids Research, 2018, 46, W510–W513. Abstract
iScienceSearchKos A., Himmler H.-J., Efficient Internet searches for chemists. Chemical Informatics, 2015, 1, Article No 12. Abstract
ISDBBauer M. A., Belford R. E., Ding J., Berleant D., ISDB: Interaction Sentence Database. BMC Research Notes, 2010, 3, Article No 122. Abstract
KeggExpLiu X., Han M., Zhao C., Chang C., Zhu Y., Ge C., Yin R., Zhan Y., Li C., Yu M., He F., Yang X., KeggExp: a web server for visual integration of KEGG pathways and expression profile data. Bioinformatics, 2019, 35, 1430–1432. Abstract
Ketcher demoKarulin B., Kozhevnikov M., Ketcher: web-based chemical structure editor. Journal of Cheminformatics, 2011, 3 (Supplement 1), Poster P3. Abstract
KiDoQGarg A., Tewari R., Raghava G. P. S., KiDoQ: using docking based energy scores to develop ligand based model for predicting antibacterials. BMC Bioinformatics, 2010, 11, Article No 125. Abstract
LAZARProvider: In Silico Toxicology GmbH 
LigAdvisorPinzi L., Tinivella A., Gagliardelli L., Beneventano D., Rastelli G., LigAdvisor: a versatile and user-friendly web-platform for drug design. Nucleic Acids Research, 2021, 49, W326–W335. Abstract
LigDigFuller J. C., Martinez M., Henrich S., Stank A., Richter S., Wade R. C., LigDig: a web server for querying ligand–protein interactions. Bioinformatics, 2015, 31, 1147–1149. Abstract
LigQRadusky L., Ruiz-Carmona S., Modenutti C., Barril X., Turjanski A. G., Martí M. A., LigQ: a webserver to select and prepare ligands for virtual screening. Journal of Chemical Information and Modeling, 2017, 57, 1741–1746. Abstract
LigTMapShaikh F., Tai H. K., Desai N., Siu S. W. I., LigTMap: ligand and structure‑based target identification and activity prediction for small molecular compounds. Journal of Cheminformatics, 2021, 13, Article No 44. Abstract
LimToxCañada A., Capella-Gutierrez S., Rabal O., Oyarzabal J., Valencia A., Krallinger M., LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Research, 2017, 45, W484–W489. Abstract
LipidFinderAlvarez-Jarreta J., Rodrigues P. R. S., Fahy E., O’Connor A., Price A., Gaud C., Andrews S., Benton P., Siuzdak G., Hawksworth J. I., Valdivia-Garcia M., Allen S. M., O’Donnell V. B., LipidFinder 2.0: advanced informatics pipeline for lipidomics discovery applications. Bioinformatics, 2021, 37, 1478–1479. Abstract
LipidMSAlcoriza-Balaguer M. I., García-Cañaveras J. C., Ripoll-Esteve F. J., Roca M., Lahoz A., LipidMS 3.0: an R-package and a web-based tool for LC-MS/MS data processing and lipid annotation. Bioinformatics, 2022, 38, 4826–4828. Abstract
LipidSigLin W.-J., Shen P.-C., Liu H.-C., Cho Y.-C., Hsu M.-K., Lin I-C., Chen F.-H., Yang J.-C., Wen-Lung Ma W.-L., Cheng W.-C., LipidSig: a web-based tool for lipidomic data analysis. Nucleic Acids Research, 2021, 49, W336–W345. Abstract
LipidSuiteMohamed A., Hill M. M., LipidSuite: interactive web server for lipidomics differential and enrichment analysis. Nucleic Acids Research, 2021, 49, W346–W351. Abstract
LitSenseAllot A., Chen Q., Kim S., Vera Alvarez R., Comeau D. C., Wilbur W. J., Lu Z., LitSense: making sense of biomedical literature at sentence level. Nucleic Acids Research, 2019, 47, W594–W599. Abstract
LitSuggestAllot A., Lee K., Chen Q., Luo L., Lu Z., LitSuggest: a web-based system for literature recommendation and curation using machine learning. Nucleic Acids Research, 2021, 49, W352–W358. Abstract
MAIPBosc N., Felix E., Arcila R., Mendez D., Saunders M. R., Green D. V. S., Ochoada J., Shelat A. A., Martin E. J., Iyer P., Engkvist O., Verras A., Duffy J., Burrows J., Gardner J. M. F., Leach A. R., MAIP: a web service for predicting bloodstage malaria inhibitors. Journal of Cheminformatics, 2021, 13, Article No 13. Abstract
MANORAATanramluk D., Narupiyaku L., Akavipat R., Gong S., Charoensawan V., MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein–ligand fragment interaction, pathways and SNPs. Nucleic Acids Research, 2016, 44, W514–W521. Abstract
MAP4Capecchi A., Probst D., Reymond J.-L., One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics, 2020, 12, Article No 43. Abstract
MAP-SearchCapecchi A., Probst D., Reymond J.-L., One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics, 2020, 12, Article No 43. Abstract
MassSpecBlocksPřívratský J., Novák J., MassSpecBlocks: a web‑based tool to create building blocks and sequences of nonribosomal peptides and polyketides for tandem mass spectra analysis. Journal of Cheminformatics, 2021, 13, Article No 51. Abstract
MBROLE2López-Ibáñez J., Pazos F., Chagoyen M., MBROLE 2.0–functional enrichment of chemical compounds. Nucleic Acids Research, 2016, 44, W201–W204. Abstract
MBROLE3López-Ibáñez J., Pazos F., Chagoyen M., MBROLE3: improved functional enrichment of chemical compounds for metabolomics data analysis. Nucleic Acids Research, 2023, 51, W305–W309. Abstract
MecDDIHu W., Zhang W., Zhou Y., Luo Y., Sun X., Xu H., Shi S., Li T., Xu Y., Yang Q., Qiu Y., Zhu F., Dai H., MecDDI: clarified drug–drug interaction mechanism facilitating rational drug use and potential drug–drug interaction prediction. Journal of Chemical Information and Modeling, 2023, 63, 1626–1636. Abstract
MERCouto F. M., Lamurias A., MER: a shell script and annotation server for minimal named entity recognition and linking. Journal of Cheminformatics, 2018, 10, Article No 58. Abstract
META-BOAHashimoto-Roth E., Surendra A., Lavallée-Adam M., Bennett S. A. L., Čuperlović-Culf M., METAbolomics data Balancing with Over-sampling Algorithms (META-BOA): an online resource for addressing class imbalance. Bioinformatics, 2022, 38, 5326–5327. Abstract
MetaboAnalystPang Z., Chong J., Zhou G., de Lima Morais D. A., Chang L., Barrette M., Gauthier C., Jacques P.-E., Li S., Xia J., MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 2021, 49, W388–W396. Abstract
Metabolome SearcherDhanasekaran A., Pearson J. L., Ganesan B., Weimer B. C., Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction. BMC Bioinformatics, 2015, 16, Article No 62. Abstract
MetaDockKamal I. M., Chakrabarti S., MetaDOCK: A combinatorial molecular docking approach. ACS Omega, 2023, 5850−5860. Abstract
MetaMappBarupal D. K., Haldiya P. K., Wohlgemuth G., Kind T., Kothari S. L., Pinkerton K. E., Fiehn O., MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinformatics, 2012, 13, Article No 99. Abstract
MetaPASSRudik A., Dmitriev A., Lagunin A., Filimonov D., Poroikov V., MetaPASS: a web application for analyzing the biological activity spectrum of organic compounds taking into account their biotransformation. Molecular Informatics, 2021, 40, Article No 2000231. Abstract
MetaPrint2DBoyer S., Zamora I., New methods in predictive metabolism. Journal of Computer-Aided Molecular Design, 2002, 16, 403-413. Link
MetaToxRudik A. V., Bezhentsev V. M., Dmitriev A. V., Druzhilovskiy D. S., Lagunin A. A., Filimonov D. A., Poroikov V. V., MetaTox: web application for predicting structure and toxicity of xenobiotics’ metabolites. Journal of Chemical Information and Modeling, 2017, 57, 638–642. Abstract
MetATTXia J., Sinelnikov I. V. Wishart D. S., MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets. Bioinformatics, 2011, 27, 2455-2456. Abstract
MetPAXia J., Wishart D. S., MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 2010, 26, 2342-2344. Abstract
MinePathKoumakis L., Roussos P., Potamias G., Minepath.org: a free interactive pathway analysis web server. Nucleic Acids Research, 2017, 45, W116–W121. Abstract
ML-PLICZhang X., Shen C., Wang T., Deng Y., Kang Y., Li D., Hou T., Pan P., ML-PLIC: a web platform for characterizing protein–ligand interactions and developing machine learning-based scoring functions. Briefings in Bioinformatics, 2023, 24, Article No bbad295. Abstract
MODELLi Z. R., Han L. Y., Xue Y., Yap C. W., Li H., Jiang L., Chen Y. Z., MODEL – Molecular Descriptor Lab: A web-based server for computing structural and physicochemical features of compounds. Biotechnology and Bioengineering, 2007, 97, 389-396. Abstract
MODLABProvider: Swiss Federal Institute of Technology
MolAlignBrown B. P., Mendenhall J., Meiler J., BCL::MolAlign: three-dimensional small molecule alignment for pharmacophore mapping. Journal of Chemical Information and Modeling, 2019, 59, 689–701. Abstract
Molecular AnatomyManelfi C., Gemei M., Talarico C., Cerchia C., Fava A., Lunghini F., Beccari A. R., “Molecular Anatomy”: a new multi‑dimensional hierarchical scaffold analysis tool. Journal of Cheminformatics, 2021, 13, Article No 54. Abstract
Molecular Formats ConverterProvider: The Open University of Israel
MOLFEATProvider: National University of Singapore
MolGpkaPan X., Wang H., Li C., Zhang J. Z. H., Ji C., MolGpka: a web server for small molecule pKa prediction using a graph-convolutional neural network. Journal of Chemical Information and Modeling, 2021, 61, 3159–3165. Abstract
MolHybWang H., Pan X., Zhang Y., Wang X., Xiao X., Ji C., MolHyb: A web server for structure-based drug design by molecular hybridization. Journal of Chemical Information and Modeling, 2022, 62, 2916–2922. Abstract
MolinspirationErtl P., Rohde B., Selzer P., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 2000, 43, 3714-3717. Abstract
Mol-InstinctsProvider: ChemEssen
MolOptShan J., Ji C., MolOpt: a web server for drug design using bioisosteric transformation. Current Computer-Aided Drug Design, 2020, 16, 460-466. Abstract
MolSolvPan X., Zhao F., Zhang Y., Wang X., Xiao X., Zhang J. Z. H., Ji C., MolTaut: a tool for the rapid generation of favorable tautomer in aqueous solution. Journal of Chemical Information and Modeling, 2023, 63, 1833–1840. Abstract
MolTautPan X., Zhao F., Zhang Y., Wang X., Xiao X., Zhang J. Z. H., Ji C., MolTaut: a tool for the rapid generation of favorable tautomer in aqueous solution. Journal of Chemical Information and Modeling, 2023, 63, 1833–1840. Abstract
MordredMoriwaki H., Tian Y.-S., Kawashita N., Takagi T., Mordred: a molecular descriptor calculator. Journal of Cheminformatics, 2018, 10, Article No 4. Abstract
MREKuwahara H., Alazmi M., Cui X., Gao X., MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Research, 2016, 44, W217-W225. Abstract
MT-EpiPredZhang R., Xie X., Ni D., Wang H., Li J., Xiao W., MT-EpiPred: Multitask learning for prediction of small-molecule epigenetic modulators. Journal of Chemical Information and Modeling, 2024, 64, 110–118. Abstract
MTiOpenScreenLabbé C., Rey J., Lagorce D., Vavruša M., Becot J., Sperandio O., Villoutreix B. O., Tufféry P., Miteva M. A., MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Research, 2015, 43, W448-W454. Abstract
MXFP Similarity SearchCapecchi A., Awale M., Probst D., Reymond J.-L., PubChem and ChEMBL beyond Lipinski. Molecular Informatics, 2019, 38, Article No 1900016. Abstract
MyCompoundIdHuan T., Li L., Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Analytical Chemistry, 2015, 87, 1306-1313. Abstract
MyMinerSalgado D., Krallinger M., Depaule M., Drula E., Tendulkar A. V., Leitner F., Valencia A., Marcelle C., MyMiner: a web application for computer-assisted biocuration and text annotation. Bioinformatics, 2012, 28, 2285-2287. Abstract
NaPLeSSorokina M., Steinbeck C., NaPLeS: a natural products likeness scorer—web application and database. Journal of Cheminformatics, 2019, 11, Article No 55. Abstract
nCoVDock2Liu K., Lu X., Shi H., Xu X., Kong R., Chang S., nCoVDock2: a docking server to predict the binding modes between COVID-19 targets and its potential ligands. Nucleic Acids Research, 2023, 51, W365–W371. Abstract
NERDDStork C., Embruch G., Šícho M., de Bruyn Kops C., Chen Y., Svozil D., Kirchmair J., NERDD: a web portal providing access to in silico tools for drug discovery. Bioinformatics, 2020, 36, 1291–1292. Abstract
NetInferWu Z., Peng Y., Yu Z., Li W., Liu G., Tang Y., NetInfer: a web server for prediction of targets and therapeutic and adverse effects via network-based inference methods. Journal of Chemical Information and Modeling, 2020, 60, 3687–3691. Abstract
NOREVAYang Q., Wang Y., Zhang Y., Li F., Xia W., Zhou Y., Qiu Y., Li H. Zhu F., NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Research, 2020, 48, W436–W448. Abstract
NormalyzerChawade A., Alexandersson E., Levander F., Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. Journal of Proteome Research, 2014, 13, 3114–3120. Abstract
novoPathFinderDing S., Tian Y., Cai P., Zhang D., Cheng X., Sun D., Yuan L., Chen J., Tu W., Wei D.-Q., Hu Q.-N., novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model. Nucleic Acids Research, 2020, 48, W477–W487. Abstract
NP AnalystLee S., van Santen J. A., Farzaneh N., Liu D. Y., Pye C. R., Baumeister T. U. H., Wong W. R., Linington R. G., NP Analyst: An open online platform for compound activity mapping. ACS Central Science, 2022, 8, 223−234. Abstract
NP NavigatorZabolotna Y., Ertl P., Horvath D., Bonachera F., Marcou G., Varnek A., NP Navigator: a new look at the natural product chemical space. Molecular Informatics, 2021, 40, Article No 2100068. Abstract
NP-ScoutChen Y., Stork C., Hirte S., Kirchmair J., NP-Scout: machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules, 2019, 9, Article No 43. Abstract
ODORactorLiu X., Su X., Wang F., Huang Z., Wang Q., Li z., Zhang R., Wu L., Pan Y., Chen Y., Zhuang H., Chen G., Shi T., Zhang J., ODORactor: a web server for deciphering olfactory coding. Bioinformatics, 2011, 27, 2302-2303. Abstract
OmicsNetZhou G., Pang Z., Lu Y., Ewald J., Xia J., OmicsNet 2.0: a web-based platform for multi-omics integration and network visual analytics. Nucleic Acids Research, 2022, 50, W527–W533. Abstract
OSIRISProvider: Organic Chemistry Portal
PaccMannCadow J., Born J., Manica M., Oskooei A., Rodríguez Martínez M., PaccMann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Research, 2020, 48, W502–W508. Abstract
PaintOmicsLiu T., Salguero P., Petek M., Martinez-Mira C., Balzano-Nogueira L., Ramšak Ž., McIntyre L., Gruden K., Tarazona S., Conesa A., PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Research, 2022, 50, W551–W559. Abstract
PanDrugsJiménez-Santos M. J., Nogueira-Rodríguez A., Piñeiro-Yáñez E., López-Fernández H., García-Martín S., Gómez-Plana P., Reboiro-Jato M., Gómez-López G., Glez-Peña D., Al-Shahrour F., PanDrugs2: prioritizing cancer therapies using integrated individual multi-omics data. Nucleic Acids Research, 2023, 51, W411–W418. Abstract
PASMetSriyudthsak K., Mejia R. F., Arita M., Yokota Hirai M., PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems. Nucleic Acids Research, 2016, 44, W205–W211. Abstract
Pathview WebLuo W., Pant G., Bhavnasi Y. K., Blanchard S. G., Brouwer C., Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Research, 2017, 45, W501–W508. Abstract
PathwayConnectorMinadakis G., Zachariou M., Oulas A., Spyrou G. M., PathwayConnector: finding complementary pathways to enhance functional analysis. Bioinformatics, 2019, 35, 889–891. Abstract
PathWhizPon A., Jewison T., Su Y., Liang Y., Knox C., Maciejewski A., Wilson M., Wishart D. S., Pathways with PathWhiz. Nucleic Acids Research, 2015, 43, W552–W559. Abstract
PBITShende G., Haldankar H., Barai R. S., Bharmal M. H., Shetty V., Idicula-Thomas S., PBIT: Pipeline Builder for Identification of drug Targets for infectious diseases. Bioinformatics, 2017, 33, 929-931. Abstract
PepSMIProvider: NovoPro
PerMMLomize A. L., Hage J. M., Schnitzer K., Golobokov K., LaFaive M. B., Forsyth A. C., Pogozheva I. D., PerMM: a web tool and database for analysis of passive membrane permeability and translocation pathways of bioactive molecules. Journal of Chemical Information and Modeling, 2019, 59, 3094-3099.  Abstract
PharmMapperWang X., Shen Y., Wang S., Li S., Zhang w., Liu X., Lai L., Pei J., Li H., PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 2017, 45, W356–W360. Abstract
PhenoMeterCarroll A., Zhang P., Whitehead L., Kaines S., Tcherkez G., Badger M. R., PhenoMeter: a metabolome database search tool using statistical similarity matching of metabolic phenotypes for high-confidence detection of functional links. Frontiers in Bioengineering and Biotechnology, 2015, 3, Article No 106. Abstract
Polypharmacology BrowserAwale M., Reymond J.-L., The polypharmacology browser: a web‑based multi‑fingerprint target prediction tool using ChEMBL bioactivity data. Journal of Cheminformatics, 2017, 9, Article No 11. Abstract
PolySearchLiu Y., Liang Y., Wishart D., PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Research, 2015, 43, W535–W542. Abstract
PPB2Awale M., Reymond J.-L., Polypharmacology Browser PPB2: target prediction combining nearest neighbors with machine learning. Journal of Chemical Information and Modeling, 2019, 59, 10-17. Abstract
PredDICTAShaikh S. A., Jayaram B., A Swift all-atom energy based computational protocol to predict DNA-drug binding affinity and ΔTm. Journal of Medicinal Chemistry, 2007, 50, 2240-2244. Abstract
Pred-hERGBraga R. C., Alves V. M., Silva M. F. B., Muratov E., Fourches, D., Liao L. M., Tropsha A., Andrade C. H.,  Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity. Molecular Informatics, 2015, 34, 698–701. Abstract
PrediSweetBouysset C., Belloir C., Antonczak S., Briand L., Fiorucci S., Novel scaffold of natural compound eliciting sweet taste revealed by machine learning. Food Chemistry, 2020, 324, Article No 126864. Abstract
Pred-SkinBraga R. C., Alves V. M., Muratov E. N., Strickland J., Kleinstreuer N., Tropsha A., Horta Andrade C., Pred-Skin: a fast and reliable web application to assess skin sensitization effect of chemicals. Journal of Chemical Information and Modeling, 2017, 57, 1013–1017. Abstract
PRIMeSakurai T., Yamada Y., Sawada Y., Matsuda F., Akiyama K., Shinozaki K., Hirai M.Y., Saito K., PRIMe Update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant & Cell Physiology, 2013, 54, Article No e5. Abstract
PRISM 3Skinnider M. A., Merwin N. J., Johnston C. W., Magarvey N. A., PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Research, 2017, 45, W49–W54. Abstract
ProteinsPlusSchöning-Stierand K., Diedrich K., Ehrt C., Flachsenberg F., Graef J., Sieg J., Penner P., Poppinga M., Ungethüm A., Rarey M., ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Research, 2022, 50, W611–W615. Abstract
ProTox-IIBanerjee P., Eckert A. O., Schrey A. K., Preissner R., ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 2018, 46, W257–W263. Abstract
PubChem molecule editorProvider: NCBI
PubChem MQN BrowserReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
PubChem PromiscuityCanny S. A., Cruz Y., Southern M. R., Griffin P. R., PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem.  Bioinformatics, 2012, 28, 140-141. Abstract
PubChemQCNakata M., Shimazaki T., PubChemQC project: a large-scale first-principles electronic structure database for data-driven chemistry. Journal of Chemical Information and Modeling, 2017, 57, 1300-1308. Abstract
PubChem SMIfp BrowserReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
pubmedKBLi P.-H., Chen T.-F, Yu J.-Y., Shih S.-H., Su C.-H., Lin Y.-H., Tsai H.-K., Juan H.-F., Chen C.-Y., Huang J.-H., pubmedKB: an interactive web server for exploring biomedical entity relations in the biomedical literature. Nucleic Acids Research, 2022, 50, W616–W622. Abstract
PubTator centralWei C. H., Allot A., Leaman R., Lu Z., PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Research, 2019, 47, W587-W593. Abstract
PUG-RESTKim S., Thiessen P. A., Cheng T., Yu  B., Bolton E. E., An update on PUG-REST: RESTful interface for programmatic access to PubChem. Nucleic Acids Research, 2018, 46, W563–W570. Abstract
PUMAGonzález-Medina M., Medina-Franco J. L., Platform for Unified Molecular Analysis: PUMA. Journal of Chemical Information and Modeling, 2017, 57, 1735–1740. Abstract
QASDOMAnashkina A. A., Kravatsky Y., Kuznetsov E., Makarov A. A., Adzhubei A. A., Meta-server for automatic analysis, scoring and ranking of docking models. Bioinformatics, 2018, 34, 297–299. Abstract
QueryChemKlekota J., Roth F. P., Schreiber S. L., QueryChem: A google-powered web search combining text and chemical structures. Bioinformatics, 2006, 22, 1670-1673. Abstract
QsarDBRuusmann V., Sild S., Maran U., QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models. Journal of Cheminformatics, 2015, 7, Article No 32. Abstract
RASPDMukherjee G., Jayaram B., A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Physical Chemistry Chemical Physics, 2013, 15, 9107-9116. Abstract
RASPD+Holderbach S., Adam L., Jayaram B., Wade R. C., Mukherjee G., RASPD+: Fast protein-ligand binding free energy prediction using simplified physicochemical features. Frontiers in Molecular Biosciences, 2020, 7, Article No 601065. Abstract
Reactome Diagram ViewerFabregat A., Sidiropoulos K., Viteri G., Marin-Garcia P., Ping P., Stein L., D’Eustachio P., Hermjakob H., Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics, 2018, 34, 1208–1214. Abstract
RealityConvertBorrel A., Fourches D., RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality. Bioinformatics, 2017, 33, 3816–3818. Abstract
RealVSYin Y., Hu H., Yang Z., Xu H., Wu J., RealVS: Toward enhancing the precision of top hits in ligand-based virtual screening of drug leads from large compound databases. Journal of Chemical Information and Modeling, 2021, 61, 4924–4939. Abstract
RepExploreGlaab E., Schneider R., RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis. Bioinformatics, 2015, 31, 2235–2237. Abstract
REStLESSChernyshov I. Y., Toukach P. V., REStLESS: automated translation of glycan sequences from residue-based notation to SMILES and atomic coordinates. Bioinformatics, 2018, 34, 2679–2681. Abstract
RF QSARLee K., Lee M., Kim D., Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics, 2017, 18, Article No 567. Abstract
RINGSAkune Y., Hosoda M., Kaiya S., Shinmachi D., Aoki-Kinoshita K. F., The RINGS resource for glycome informatics analysis and data mining on the Web. OMICS, 2010, 14, 475-486. Abstract
RmSquareRoy K., Chakraborty P., Mitra I., Ojha P. K., Kar S., Das R. N., Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data. Journal of Computational Chemistry, 2013, 34, 1071-1082. Abstract
RxnFinderHu Q.-N., Deng Z., Hu H., Ca D.-S., Liang Y.-Z., RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity. Bioinformatics, 2011, 27, 2465-2467. Abstract
SanjeeviniJayaram B., Singh T., Mukherjee G., Mathur A., Shekhar S., Shekhar V., Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13 (Suppl 17), Article No S7. Abstract
SankeyMATICAuthor: Steve Bogart
SBGridMeyer P. A., Socias S., Key J., Ransey E., Tjon E. C., Buschiazzo A., Lei M., Botka C., Withrow J., Neau D., Rajashankar K., Anderson K.S., Baxter R. H., Blacklow S. C., Boggon T. J., Bonvin A. M., Borek D., Brett T. J., Caflisch A., Chang C. I., Chazin W. J., Corbett K. D., Cosgrove M. S., Crosson S., Dhe-Paganon S., Di Cera E., Drennan C. L., Eck M. J., Eichman B. F., Fan Q. R., Ferré-D’Amaré A. R., Fromme J. C., Garcia K. C., Gaudet R., Gong P., Harrison S. C., Heldwein E. E., Jia Z., Keenan R. J., Kruse A. C., Kvansakul M., McLellan J. S., Modis Y., Nam Y., Otwinowski Z., Pai E. F., Pereira P. J., Petosa C., Raman C. S., Rapoport T. A., Roll-Mecak A., Rosen M. K., Rudenko G., Schlessinger J., Schwartz T. U., Shamoo Y., Sondermann H., Tao Y. J., Tolia N. H., Tsodikov O. V., Westover K. D., Wu H., Foster I., Fraser J. S., Maia F. R., Gonen T., Kirchhausen T., Diederichs K., Crosas M., Sliz P., Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, Article No 10882. Abstract
Screening ExplorerEmpereur-Mot C., Zagury J.-F., Montes M., Screening Explorer–an interactive tool for the analysis of screening results. Journal of Chemical Information and Modeling, 2016, 56, 2281–2286. Abstract
SEAKeiser M. J., Roth B. L., Armbruster B. N., Ernsberger P., Irwin J. J., Shoichet B. K., Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 2007, 25, 197-206. Abstract
SEABEDFenollosa C., Otón M., Andrio P., Cortés J., Orozco M., Goñi J. R., SEABED: Small molEcule activity scanner weB servicE baseD. Bioinformatics, 2015, 31, 773-775. Abstract
SelenzymeCarbonell P., Wong J., Swainston N., Takano E., Nicholas J. Turner N. J., Scrutton N. S., Kell D. B., Breitling R., Faulon J.-L., Selenzyme: enzyme selection tool for pathway design. Bioinformatics, 2018, 34, 2153–2154. Abstract
SeMPIZierep P. F., Padilla N., Yonchev D. G., Telukunt K. K., Klementz D., Günther S. G., SeMPI: a genome-based secondary metabolite prediction and identification web server. Nucleic Acids Research, 2017, 45, W64-W71. Abstract
SensiPathDelépine B., Libis V., Carbonell P., Faulon J.-L., SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research, 2016, 44, W226–W231. Abstract
ShinyBuonaiuto M. A., Lang A. S. I. D., Prediction of 1-octanol solubilities using data from the Open Notebook Science Challenge. Chemistry Central Journal, 2015, 9, Article No 50. Abstract
SIMCOMPHattori M., Tanaka N., Kanehisa M., Goto S., SIMCOMP/SUBCOMP: chemical structure search servers for network analyses. Nucleic Acids Research, 2010, 38, W652-W656. Abstract
Skin DoctorProvider: Universität Hamburg
SLAPChen B., Ding Y., Wild D. J., Assessing drug target association using semantic linked data. PLoS Computational Biology, 2012, 8, Article No e1002574. Abstract
SMARTSviewerSchomburg K., Ehrlich H.-C., Stierand K., Rarey M., Chemical pattern visualization in 2D–the SMARTSviewer. Journal of Cheminformatics, 2011, 3 (Suppl 1), Abstract No O12. Abstract
Smiles2MonomersDufresne Y., Noé L., Leclère V., Pupin M., Smiles2Monomers: a link between chemical and biological structures for polymers. Journal of Cheminformatics, 2015, 7, Article No 6. Abstract
SMILESDrawerProbst D., Reymond J.-L., SmilesDrawer: parsing and drawing SMILES-encoded molecular structures using client-side JavaScript. Journal of Chemical Information and Modeling, 2018, 58, 1–7. Abstract
SPOT-Ligand2Litfin T., Zhou Y., Yang Y., SPOT-ligand 2: improving structure-based virtual screening by binding-homology search on an expanded structural template library. Bioinformatics, 2017, 15, 1238-1240. Abstract
StackPRSchaduangrat N., Anuwongcharoen N., Moni M. A., Lio’ P., Charoenkwan P., Shoombuatong W., StackPR is a new computational approach for large‑scale identification of progesterone receptor antagonists using the stacking strategy. Scientific Reports, 2022, 12, Article No 16435. Abstract
SUBCOMPHattori M., Tanaka N., Kanehisa M., Goto S., SIMCOMP/SUBCOMP: chemical structure search servers for network analyses. Nucleic Acids Research, 2010, 38, W652-W656. Abstract
Sugar Removal UtilitySchaub J., Zielesny A., Steinbeck C., Sorokina M., Too sweet: cheminformatics for deglycosylation in natural products. Journal of Cheminformatics, 2020, 12, article No 67. Abstract
SuperPredGallo K., Goede A., Preissner R., Gohlke B.-O., SuperPred 3.0: drug classification and target prediction–a machine learning approach. Nucleic Acids Research, 2022, 50, W726–W731. Abstract
SwissADMEDaina A., Michielin O., Zoete V., SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 2017, 7, Article No 42717. Abstract
SwissDockGrosdidier A., Zoete V., Michielin O., SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 2011, 39, W270-W277. Abstract
SwissParamBugnon M., Goullieux M., Röhrig U. F., Perez M. A. S., Daina A., Michielin O., Zoete V., SwissParam 2023: A Modern Web-Based tool for efficient small molecule parametrization. Journal of Chemical Information and Modeling, 2023, 63, 6469–6475. Abstract
SwissSimilarityZoete V., Daina A., Bovigny C., Michielin O., SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 2016, 56, 1399–1404. Abstract
SwissTargetPredictionDaina A., Michielin O., Zoete V., SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 2019, 47, W357–W364. Abstract
SynergyFinderIanevski A., Giri A. K., Aittokallio T., 2022, SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Research, 2022, 50, W739–W743. Abstract
systemsDockHsin K.-Y., Matsuoka Y., Asai Y., Kamiyoshi K., Watanabe T., Kawaoka Y., Kitano H., systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Research, 2016, 44, W507–W513. Abstract
TCMAnalyzerLiu Z., Du J., Yan X., Zhong J., Cui L., Lin J., Zeng L., Ding P., Chen P., Zhou X., Zhou H., Gu Q., Xu J., TCMAnalyzer: a chemo- and bioinformatics web service for analyzing traditional Chinese medicine. Journal of Chemical Information and Modeling, 2018, 58, 550–555. Abstract
TeamTatIslamaj R., Kwon D., Kim S., Lu Z., TeamTat: a collaborative text annotation tool. Nucleic Acids Research, 2020, 48, W5–W11. Abstract
TL4DTI
Dalkıran A., Atakan A., Rifaioğlu A. S., Martin M. J., Atalay R., Acar A. C., Doğan T., Atalay V., Transfer learning for drug–target interaction prediction. Bioinformatics, 2023, 39, i103-i110. Abstract
TNFPubChemMelagraki G., Ntougkos E., Rinotas V., Papaneophytou C., Leonis G., Mavromoustakos T., Kontopidis G., Douni E., Afantitis A., Kollias G., Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB ligand (RANKL). PLoS Computational Biology, 2017, 13, Article No e1005372. Abstract
ToxAnalyzerRodrigues D. R., Batista Mariano D. C., Silva Santos L. H., Tagliati C. A., ToxAnalyzer: A user-friendly web tool for interactive data analysis and visualization of chemical compounds from the Comparative Toxicogenomics Database (CTD)™. Computational Toxicology, 2021, 19, Article No 100170. Abstract
toxFlowVarsou D.-D., Tsiliki G., Nymark P., Kohonen P., Grafström R., Sarimveis H., toxFlow: a web-based application for read-across toxicity prediction using omics and physicochemical data. Journal of Chemical Information and Modeling, 2018, 58, 543–549. Abstract
ToxiPredMishra N. K., Singla D., Agarwal S., Open Source Drug Discovery Consortium, Raghava G. P. S., ToxiPred: a server for prediction of aqueous toxicity of small chemical molecules in T. pyriformis. Journal of Translational Toxicology, 2014, 1, 21-27. Abstract
TPACM4Mukherjee G., Patra N., Barua P., Jayaram B., A Fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets (TPACM4). Journal of Computational Chemistry, 2011, 32, 893-907. Abstract
University of Berne websiteReymond J.-L., The chemical space project. Accounts of Chemical Research, 2015, 48, 722–730. Abstract
USR-VSLi H., Leung K.-S., Wong M.-H., Ballester P. J., USR-VS: a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques. Nucleic Acids Research, 2016, 44, W436–W441. Abstract
VAMMPIRE-LORDWeber J., Achenbach J., Moser D., Proschak E., VAMMPIRE-LORD: A web server for straightforward lead optimization using matched molecular pairs. Journal of Chemical Information and Modeling, 2015, 55, 207–213. Abstract
VCCLABTetko I. V., Gasteiger J. C, Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin V. A., Radchenko E. V., Zefirov N. S., Makarenko A. S., Tanchuk V. Y., Prokopenko V. V., Virtual Computational Chemistry Laboratory – Design and description. Journal of Computer-Aided Molecular Design, 2005, 19, 453-463. Abstract
VEGA On-linePedretti V., Villa L., Vistoli G., VEGA – An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. Journal of Computer-Aided Molecular Design, 2004, 18, 167–173. Abstract
VennProvider: University of Ghent
VennyAuthor: Juan Carlos Oliveros; Provider: Centro Nacional de Biotecnología, (CNB-CSIC)
Vir2DrugMinadakis G., Tomazou M., Dietis N., Spyrou G. M., Vir2Drug: a drug repurposing framework based on protein similarities between pathogens. Briefings in Bioinformatics, 2023, 24, Article No bbac536. Abstract
Virtual LogPGaillard P., Carrupt P. A., Testa B., Boudon A., Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. Journal of Computer-Aided Molecular Design, 1994, 8, 83-96. Abstract
VirtualTasteFritz F., Preissner R., Banerjee P., VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Research, 2021, 49, W679–W684. Abstract
Virtuous UmamiPallante L., Korfiati A., Androutsos L., Stojceski F., Bompotas A., Giannikos I., Raftopoulos C., Malavolta M., Grasso G., Mavroudi S., Kalogeras A., Martos V., Amoroso D., Piga D., Theofilatos K., Deriu M. A., Toward a general and interpretable umami taste predictor using a multi‑objective machine learning approach. Scientific Reports, 2022, 12, Article No 21735. Abstract
vsFiltGushchina I. V., Polenova A. M., Suplatov D. A., Švedas V. K., Nilov D. K., vsFilt: a tool to improve virtual screening by structural filtration of docking poses. Journal of Chemical Information and Modeling, 2020, 60, 3692–3696. Abstract
Way2DrugRudik A. V., Dmitriev A. V., Lagunin A. A., Filimonov D. A., Poroikov V. V., 2016, Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. Journal of Cheminformatics, 2016, 8, Article No 68. Abstract
webDrugCSAwale M., Reymond J.-L., Web‑based 3D‑visualization of the DrugBank chemical space. Journal of Cheminformatics, 2016, 8, Article No 25. Abstract
WebinaKochnev Y., Hellemann E., Cassidy K. C., Durrant J. D., Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics, 2020, 36, 4513–4515. Abstract
webMolCSAwale M., Probst D., Reymond J.-L., WebMolCS: a web-based interface for visualizing molecules in three-dimensional chemical spaces. Journal of Chemical Information and Modeling, 2017, 57, 643-649. Abstract
Wikipedia Chemical Structure ExplorerErtl P., Patiny L., Sander T., Rufener C., Zasso M., Wikipedia Chemical Structure Explorer: substructure and similarity searching of molecules from Wikipedia. Journal of Cheminformatics, 2015, 7, Article No 10. Abstract
WURCSMatsubara M., Aoki-Kinoshita K. F., Aoki N. P., Yamada I., Narimatsu H., WURCS 2.0 update to encapsulate ambiguous carbohydrate structures. Journal of Chemical Information and Modeling, 2017, 57, 632–637. Abstract
XenoNetFlynn N. R., Le Dang N., Ward M. D., Swamidass S. J., XenoNet: inference and likelihood of intermediate metabolite formation. Journal of Chemical Information and Modeling, 2020, 60, 3431–3449. Abstract
ZINC BrowserAwale M., Reymond J.-L., A multi-fingerprint browser for the ZINC database. Nucleic Acids Research, 2014, 42, W234–W239. Abstract
ZINC ExpressBobrowski T. M., Korn D. R., Muratov E. N., Tropsha A., ZINC Express: a virtual assistant for purchasing compounds annotated in the ZINC database. Journal of Chemical Information and Modeling, 2021, 61, 1033–1036. Abstract

Last Updated on 17-04-2024 by Piotr Minkiewicz